Metal Permeation into Multi-layered Graphene Oxide

نویسندگان

  • Chikako Ogata
  • Michio Koinuma
  • Kazuto Hatakeyama
  • Hikaru Tateishi
  • Mohamad Zainul Asrori
  • Takaaki Taniguchi
  • Asami Funatsu
  • Yasumichi Matsumoto
چکیده

Understanding the chemical and physical properties of metal/graphene oxide (M/GO) interfaces is important when GO is used in electronic and electrochemical devices because the metal layer must be firmly attached to GO. Here, permeation of metal from the surface into GO paper bulk at the M/GO interface was observed at room temperature for metals such as Cu, Ag, Ni, Au, and Pt. Cu, Ag, and Ni quickly permeated GO as ions into the bulk under humid conditions. At first, these metals changed to hydrated ions as a result of redox reactions (with reduction of GO) at the surface, and then permeated the interlayers. Au and Pt were observed to permeate GO as atoms into the GO bulk at room temperature, although the permeation rates were low. These surprising results are considered to be due to the presence of many defects and/or edges with oxygenated groups in the GO paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxic metal removal from aqueous solution by advanced Carbon allotropes: a case study from the Sungun Copper Mine

The sorption efficiencies of graphene oxide (GO) and functionalized multi-walled carbon nanotubes (f-MWCNTs) were investigated and elucidated to study their potential in treating acid mine drainage (AMD) containing Cu2+, Mn2+, Zn2+, Pb2+, Fe3+ and Cd2+ metal ions. Several layered GO nanosheets and f-MWCNTs were formed via the modified Hummers’ method and the acid treatment of the MWCNTs, respec...

متن کامل

In situ growth of noble metal nanoparticles on graphene oxide sheets and direct construction of functionalized porous-layered structure on gravimetric microsensors for chemical detection.

Noble metal nanoparticles are directly and homogeneously grown onto graphene-oxide (GO) sheets in oleylamine. After the oleylamine is removed, the GO sheets are exfoliated by the nanoparticle pillars to further form hierarchical GO nanostructures with molecule accessible nanopores. With specific sensing-groups modified, the porous-layered nanostructure can be constructed onto resonant microcant...

متن کامل

Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.

Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors, and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale, and multiphase building blocks have been investigated w...

متن کامل

Fabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique

Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...

متن کامل

An Effective Way to Optimize the Functionality of Graphene-Based Nanocomposite: Use of the Colloidal Mixture of Graphene and Inorganic Nanosheets

The best electrode performance of metal oxide-graphene nanocomposite material for lithium secondary batteries can be achieved by using the colloidal mixture of layered CoO2 and graphene nanosheets as a precursor. The intervention of layered CoO2 nanosheets in-between graphene nanosheets is fairly effective in optimizing the pore and composite structures of the Co3O4-graphene nanocomposite and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014